詳細研讀本篇數列解法和例題,可快速解決MBA數列問題。 基本數列是等差數列和等比數列.
一、等差數列一個等差數列由兩個因素確定:首項a1和公差d. 得知以下任何一項,就可以確定一個等差數列(即求出數列的通項公式):
1、首項a1和公差d
2、數列前n項和s(n),因為s(1)=a1,s(n)-s(n-1)=a(n)
3、任意兩項a(n)和a(m),n,m為已知數
等差數列的性質:
1、前N項和為N的二次函數(d不為0時)
2、a(m)-a(n)=(m-n)*d 3、正整數m、n、p為等差數列時,a(m)、a(n)、a(p)也是等差數列
例題1:已知a(5)=8,a(9)=16,求a(25)
解: a(9)-a(5)=4*d=16-8=8 a(25)-a(5)=20*d=5*4*d=40 a(25)=48
例題2:已知a(6)=13,a(9)=19,求a(12)
解:a(6)、a(9)、a(12)成等差數列 a(12)-a(9)=a(9)-a(6) a(12)=2*a(9)-a(6)=25
二、等比數列一個等比數列由兩個因素確定:首項a1和公差d. 得知以下任何一項,就可以確定一個等比數列(即求出數列的通項公式):
1、首項a1和公比r
2、數列前n項和s(n),因為s(1)=a1,s(n)-s(n-1)=a(n)
3、任意兩項a(n)和a(m),n,m為已知數
等比數列的性質:
1、a(m)/a(n)=r^(m-n)
2、正整數m、n、p為等差數列時,a(m)、a(n)、a(p)是等比數列
3、等比數列的連續m項和也是等比數列即b(n)=a(n)+a(n+1)+...+a(n+m-1)構成的數列是等比數列。
三、數列的前N項和與逐項差
1、如果數列的通項公式是關于N的多項式,最高次數為P,則數列的前N項和是關于N的多項式,最高次數為P+1。(這與積分很相似)
2、逐項差就是數列相鄰兩項的差組成的數列。如果數列的通項公式是關于N的多項式,最高次數為P,則數列的逐項差的通項公式是關于N的多項式,最高次數為P-1。(這與微分很相似)例子: 1,16,81,256,625,1296 (a(n)=n^4) 15,65,175,369,671 50,110,194,302 60,84,108 24,24 從上例看出,四次數列經過四次逐項差后變成常數數列。 等比數列的逐項差還是等比數列 四、已知數列通項公式A(N),求數列的前N項和S(N)。這個問題等價于求S(N)的通項公式,而S(N)=S(N-1)+A(N),這就成為遞推數列的問題。解法是尋找一個數列B(N),使S(N)+B(N)=S(N-1)+B(N-1)從而S(N)=A(1)+B(1)-B(N)猜想B(N)的方法:把A(N)當作函數求積分,對得出的函數形式設待定系數,利用B(N)-B(N-1)=-A(N)求出待定系數。
例題1:求S(N)=2+2*2^2+3*2^3+...+N*2^N 解:S(N)=S(N-1)+N*2^N N*2^N積分得(N*LN2-1)*2^N/(LN2)^2 因此設B(N)=(PN+Q)*2^N 則 (PN+Q)*2^N-[P(N-1)+Q)*2^(N-1)=-N*2^N (P*N+P+Q)/2*2^N=-N*2^N 因為上式是恒等式,所以P=-2,Q=2 B(N)=(-2N+2)*2^N A(1)=2,B(1)=0 因此:S(N)=A(1)+B(1)-B(N) =(2N-2)*2^N+2
例題2:A(N)=N*(N+1)*(N+2),求S(N)解法1:S(N)為N的四次多項式,設:S(N)=A*N^4+B*N^3+C*N^2+D*N+E 利用S(N)-S(N-1)=N*(N+1)*(N+2)解出A、B、C、D、E 解法2: S(N)/3!=C(3,3)+C(4,3)+...C(N+2,3) =C(N+3,4) S(N)=N*(N+1)*(N+2)*(N+3)/4
1、凡本網注明“來源:中國MBA教育網”的所有作品,均為中國MBA教育網合法擁有版權或有權使用的作品,未經本網授權不得轉載、摘編或利用其它方式使用上述作品。已經本網授權使用作品的,應在授權范圍內使用,并注明“來源:中國MBA教育網”。違反上述聲明者,本網將追究其相關法律責任。
2、凡本網注明“來源:XXX(非中國MBA教育網)”的作品,均轉載自其它媒體,轉載目的在于傳遞更多信息,并不代表本網贊同其觀點和對其真實性負責。
3、本網不保證向用戶提供的外部鏈接的準確性和完整性,該外部鏈接指向的不由本網實際控制的任何網頁上的內容,本網對其合法性亦概不負責,亦不承擔任何法律責任。
您的每一個有效信息都至關重要
服務熱線:010-8286 3124